Quantcast
Viewing all articles
Browse latest Browse all 349

Cisco adds sFlow support

Image may be NSFW.
Clik here to view.
Cisco Nexus 3000 series switches
Cisco added support for the sFlow standard in the latest NX-OS 5.0(3)U4(1) release for Nexus 3000 series switches. The Nexus 3000 series are the first Cisco switches based on merchant silicon, which includes hardware support for sFlow, offering scalable, wire-speed, monitoring of all traffic flowing throughout entire networks of Nexus 3000 series switches.
Image may be NSFW.
Clik here to view.
Example: sFlowTrend Top connections chart
The article, 10 Gigabit Ethernet, describes the trend toward 10 Gigabit networking and the critical role that top of rack switches play in next generation data center architectures. Most organisations are predicted to upgrade to 10 Gigabit top of rack switches within the next two years in order to support the demands of virtualization and cloud computing. With the addition of Cisco, all leading switch vendors now have 10 Gigabit top of rack switches that support the sFlow standard, making sFlow the obvious choice when selecting a vendor neutral performance monitoring solution for large scale cloud environments.

Since the Nexus 3000 series switches are the first Cisco products with sFlow, the rest of this article is addressed to Cisco network administrators who are likely to be unfamiliar with sFlow technology. As a Cisco network administrator, you are likely to have experience with using Cisco's Switched Port Analyzer (SPAN) technology to selectively monitor traffic in Cisco edge switches and with Cisco's Netflow technology for monitoring TCP/IP traffic in Cisco routers.

By adding sFlow support to the Nexus 3000 series, Cisco eliminates the need for probes, providing wire-speed 10 Gigabit monitoring of all switch ports - the functional equivalent of forty-eight 10 Gigabit probes and four 40 Gigabit probes in a Nexus 3064 - embedded in the switch hardware at no extra cost. If you are familiar with RMON probes, sFlow is functionally equivalent to deploying an RMON probe for each switch port.

Based on the name, you might think that sFlow is just another version of Cisco Netflow. However, this is not the case - sFlow differs significantly from NetFlow and understanding these differences is important if you want to get the most out of sFlow:
  1. sFlow exports interface counters, eliminating the need for SNMP polling - extremely useful when you have tens of thousands of edge switch ports to monitor.
  2. sFlow exports packet headers not flow records. By exporting packet headers, sFlow is able to provide full layer 2 - 7 visibility into all types of traffic flowing at the network edge, including: MAC addresses, VLANs, TRILL, tunnels (GRE, VXLAN etc.), Ethernet SAN traffic (FCoE and AoE), IPv6 in addition to the TCP/IP information typically reported by NetFlow. You can even use sFlow with Wireshark for remote packet capture.
  3. sFlow is highly scalable. Unlike NetFlow, which is typically enabled on selected links at the core, sFlow is enabled on every port, on every switch, for full end-to-end network visibility. The sFlow measurements are implemented in silicon and won't impact switch CPU. The scalability of sFlow allows tens of thousands of 10G switch ports in the top of rack switches, as well as their 40 Gigabit uplink ports, to be centrally monitored. In addition, sFlow is available in 100 Gigabit switches, ensuring visibility as higher speed interconnects are deployed to support the growing 10 Gigabit edge.
  4. sFlow is easy to configure and manage. Eliminating complexity is essential for large scale web 2.0, big data, virtualization and cloud deployments.
  5. sFlow is a multi-vendor standard supported by almost every network equipment vendor. You can mix and match Cisco Nexus 3000 series switches with best in class solutions from other vendors and still maintain comprehensive, interoperable, data center wide visibility.
  6. sFlow is not just for switches. The sFlow standard also provides visibility into server, storage, virtual machine and application performance, helping to break down management silos by providing a consistent view of performance to operations and development teams (see DevOps).
  7. sFlow functionality is determined by the choice of sFlow analyzer. With Flexible NetFlow, much of the analysis is performed on the network device, limiting the functionality of NetFlow collectors to simply recording the data and generating reports. As a result, NetFlow collectors end up being fairly generic in functionality. In contrast, sFlow shifts analysis from the switches to a central sFlow analyzer which determines how to process the data and present the results, see Choosing an sFlow analyzer. The result is a greater diversity of solutions and there is likely to be an sFlow analyzer that is particularly well adapted to your requirements. While many NetFlow collectors claim sFlow support, their support tends to be limited, ignoring sFlow specific features and treating sFlow as if it were basic NetFlow version 5.
Trying out sFlow is easy, just upgrade to the latest NX-OS release, configure sFlow export, and install the free sFlowTrend analyzer to gain real-time visibility - providing immediate answers to the Who, What, Where, When, Why and How questions that are the key to effective management.

Viewing all articles
Browse latest Browse all 349

Trending Articles